ВЫКСУНСКИЙ ФИЛИАЛ

ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО АВТОНОМНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСИС»

Кафедра общепрофессиональных дисциплин

No 49

С.М. Горбатюк Л.В. Седых К.П.Лунев

Технология конструкционных материалов

Методическое пособие по выполнению курсовой работы

Рекомендовано редакционно-издательским советом ВФ МИСиС

Выкса 2012

УДК 621

Рецензент профессор, доктор техн. наук. И.Г. Роберов

Технология конструкционных материалов. Методическое пособие по выполнению курсовой работы. С.М. Горбатюк, Л.В. Седых, К.П. Лунев - Выкса: Выксунский филиал «НИТУ «МИСиС», 2011-61с.

Методические указания предназначены для выполнения курсовой работы по теме: «Разработка технологического процесса обработки детали» с учетом специфики кафедры инжиниринга технологического оборудования МИСиС и кафедры естественнонаучных дисциплин Выксунского филиала НИТУ МИСиС.

В методических указаниях представлены данные, необходимые для выполнения работы по составлению маршрутной технологии изготовления детали в условиях единичного производства. Пособие разработано на основе кафедральных методических указаний по курсовому проектированию и предназначено для студентов и руководителей курсовой работы.

Предназначено для студентов специальности 150404 «Металлургические машины и оборудование».

Соответствует государственному образовательному стандарту дисциплины «Технология конструкционных материалов

© С.М. Горбатюк, Л.В.Седых, К.П.Лунев © НИТУ «МИСиС», © Выксунский филиал «НИТУ «МИСиС», 2012 СОДЕРЖАНИЕ Предисловие 4 1. Цель курсовой работы 5 2. Объем и содержание курсовой работы 7 3. Классический расчет режимов резания 10

ПРЕДИСЛОВИЕ

Данные методические указания, предназначенные для работы курсовой «Разработка выполнения ПО теме: технологического процесса обработки детали», включающие вопросы организации, выполнения и защиты курсовой работы по технологии конструкционных материалов с учетом кафедры специфики инжиниринга технологического МИСиС кафедры оборудования И естественнонаучных НИТУ МИСиС. дисциплин Выксунского филиала разработаны на основе кафедральных методических указаний ПО курсовому проектированию И предназначены ДЛЯ студентов и руководителей курсовой работы.

В данных методических указаниях приведен классический расчет режимов резания, представлены данные, необходимые для выполнения работы по составлению маршрутной технологии изготовления детали в условиях единичного производства, а также показатели эффективности результатов расчетов.

Предназначены для студентов специальности 150404 «Металлургические машины и оборудование».

1. ЦЕЛЬ КУРСОВОЙ РАБОТЫ

Цель курсовой работы — научить студента применять теоретические знания, полученные в результате изучения дисциплины «Технология обработки конструкционных материалов».

Темой курсовой работы является разработка технологического процесса изготовления детали.

Рекомендуется выбирать деталь, разработанную студентом в процессе выполнения курсового проекта по дисциплине «Детали машин», а также деталь оборудования действующего производства. В качестве детали можно зубчатое предложить колесо, ступенчатый вал co крышки ШПОНОЧНЫМИ пазами, подшипниковых **УЗЛОВ**, коленчатые валы и т.п.

Каждому студенту преподаватель кафедры выдает наименование детали. Студент самостоятельно или с преподавателем подбирает себе чертеж детали и выясняет требования чертежа, а также вносит необходимые изменения.

Студент должен знать:

- правила оформления чертежа согласно правилам ЕСКД;
- методы получения заготовок: литьем, ковкой, штамповкой, прокаткой и т.п.;

- методы обработки материалов резанием;
- классификацию металлорежущих станков;
- терминологию и основы теории резания;
- режущий и измерительный инструмент;
- состав нормы подготовительно-заключительного и штучного времени на операцию;

Студент должен уметь:

- вычерчивать чертеж детали;
- рассчитывать режимы резания;
- назначать режимы резания;
- составлять эскизы заготовки;
- составлять и оформлять маршрутную карту

изготовления детали;

• рассчитывать основное (машинное) время операции.

2. ОБЪЕМ И СОДЕРЖАНИЕ КУРСОВОЙ РАБОТЫ

Курсовая работа состоит из расчетно-пояснительной записки объемом 15-20 страниц, написанной (напечатанной) на листах формата A4 (297×210 мм), и одного листа графического материала формата A1 (841×594 мм). Допускается выполнение графической части на листе формата A2 (594×420 мм).

Маршрутная карта изготовления детали выполняется на листах формата A1 или A2 (594×420 мм) от руки, карандашом или в электронном виде.

Пояснительная записка должна состоять из 2-х разделов:

- раздел 1 «Классический расчет режимов резания при токарной обработке»;
- раздел 2 «Предварительная разработка технологического маршрута изготовления детали».

Графическая часть должна представлять собой маршрутную карту изготовления детали, выполненную на листах формата A1 или A2 (594×420 мм) от руки карандашом или в электронном виде.

Примерное содержание пояснительной записки курсовой работы

Раздел 1.«Классический расчет режимов резания при токарной обработке»:

- 1.1. Выбор заготовки и назначение припусков на размеры.
- 1.2. Распределение припуска при выборе характера обработки.
- 1.3. Выбор режущего инструмента (материала, формы режущей част, размеры поперечного сечения державки, вылет резца и т.д.).

1.4. Расчет подачи:

- 1.4.1. допускаемой прочностью механизма подачи станка;
 - 1.4.2. допускаемой прочностью державки резца;
 - 1.4.3. допускаемой жесткостью державки резца;
 - 1.4.4. допускаемой прочностью детали;
 - 1.4.5. допускаемой жесткостью детали;
- 1.4.6. допускаемой режущими свойствами режущей части резца.

1.5. Расчет скорости резания:

- 1.5.1. тангенциальная составляющая силы резания;
- 1.5.2. крутящий момент резания;

- 1.5.3. число оборотов шпинделя по крутящему моменту;
 - 1.5.4. скорость резания по инструменту;
- 1.5.5. число оборотов шпинделя по режущим свойствам инструмента;
 - 1.5.6. фактическая скорость резания;
- 1.6. Показатели эффективности результатов расчета:
 - 1.6.1. фактическая тангенциальная составляющая силы резания;
 - 1.6.2. фактическая мощность, затрачиваемая на резание;
 - 1.6.3. коэффициент использования инструмента по скорости резания;
 - 1.6.4. коэффициент использования станка по мощности.
 - 1.6.5. Основное время на черновую обработку.
 - 1.6.6. Основное время на чистовую обработку.

Режимы резания рассчитываются только для черновой обработки. Для остальных характеров и видов обработки рассчитывается только основное время. Режимы резания назначаются.

1.6.7. Суммарное основное время на обработку детали.

Раздел 2.«Предварительная разработка

технологического маршрута изготовления детали»:

- 2.1. Схемы обработки отдельных переходов с расчетами основного времени.
 - 2.2. Расчет суммарного основного времени.

3. КЛАССИЧЕСКИЙ РАСЧЕТ РЕЖИМОВ РЕЗАНИЯ

3.1 Выбор заготовки и назначение припусков на размеры

Заготовки и припуски на размеры выбирают из анализа материала, из которого изготавливается деталь, и технических характеристик детали, заданных на чертеже Приложения 1.

3.2 Распределение припуска при выборе характера обработки

Рассчитываемый припуск — h, мм:

$$h = \frac{D - d}{2} \tag{1}$$

где D — диаметр обрабатываемой заготовки, мм;

d - диаметр обработанной детали, мм.

Распределение припуска **h** на обработку в зависимости от заданной шероховатости определяется по таблице 1 Приложения 1.

3.3 Выбор режущего инструмента (материала, формы режущей части, размеров поперечного сечения державки, вылета резца и т.п.)

Выбираем материал режущей части, форму передней поверхности, геометрические параметры режущей части (углы α , β , γ), размеры поперечного сечения державки и вылет резцов для предварительной и окончательной обработки.

3.4 Расчет подачи

3.4.1 Допускаемая прочность механизма подачи станка — S_{l} ,мм/об:

$$S_{1} = \left(\frac{P_{\partial on1}}{C_{Px} \cdot t^{x_{Px}} \cdot V^{z_{Px}} \cdot K_{Px}}\right)^{\frac{1}{y_{PX}}}$$
(2)

где V — скорость резания в м/мин, далее принимаемая для чернового прохода 70 м/мин, как близкая к нижнему пределу при работе резцами, оснащенными пластинами из твердых сплавов;

 $P_{\it don1}$ — наибольшая осевая сила, допускаемая прочностью механизма подачи токарного станка в H, равная $0,4~[{\rm P_z}]$, где $[P_{\it z}]$ — допускаемая тангенциальная составляющая силы резания для механизма станка; для станков типа 16K20 можно принять как 12000,00~H, для станков типа 163(165) — 20000,00~H.

 C_{Px} — коэффициент обрабатываемости материалов для осевой силы резания (Приложение 2)

 x_{Px} ; y_{Px} ; z_{Px} – показатели степеней (Приложение 2)

 K_{Px} – общий поправочный коэффициент, учитывающий условия обработки, равный:

$$K_{Px} = K_{m_{Px}} \cdot K_{\varphi_{Px}} \cdot K_{\gamma_{Px}} \cdot K_{\lambda_{Px}} \cdot \dots \cdot K_{h_{Px}}$$

$$(3)$$

где $K_{m_{Px}}$ – коэффициент обрабатываемости материала;

 $K_{\gamma_{px}}$ – коэффициент величины переднего угла;

Все поправочные коэффициенты указаны в Приложении 2.

3.4.2 Допускаемая прочность державки резца — S_2 ,мм/об:

$$S_2 = \left(\frac{P_{\partial on2}}{C_{PZ} \cdot t^{X_{PZ}} \cdot V^{Z_{PZ}} \cdot K_{PZ}}\right)^{\frac{1}{Y_{PZ}}}$$
(4)

где $P_{\partial on2}$ — наибольшая тангенциальная сила резания, допускаемая прочностью державки резца в H, равная:

$$P_{ДO\Pi_2} = \frac{B \cdot H^2 \cdot [\sigma_u]}{6 \cdot l_P} \tag{5}$$

где В – ширина державки резца в мм;

Н – высота державки резца в мм;

 l_p — вылет резца в мм, при наружном точении равный $l_p = (1 \div 1, 5) \; H \; \text{в мм};$

 $[\sigma_u]$ — допускаемое напряжение изгиба материала державки резца в МПа, равное для сталей державок $[\sigma_u]$ = 0,3 σ_s в МПа; можно принять $[\sigma_u]$ = 200 МПа

Показатели степеней C_{Pz} и K_{Pz} находятся аналогично коэффициентам пункта 3.4.1 в Приложении 2.

3.4.3. Допускаемая жесткость державки резца — S_3 , мм/об:

$$S_{3} = \left(\frac{P_{\partial on3}}{C_{PZ} \cdot t^{X_{PZ}} \cdot V^{Z_{PZ}} \cdot K_{PZ}}\right)^{\frac{1}{Y_{PZ}}}$$
(6)

где $P_{\partial on3}$ — наибольшая тангенциальная сила резания, допускаемая жесткостью державки резца в H, равна:

$$P_{oon3} = \frac{3f_p \cdot E_p \cdot I_p}{l_p^3} \tag{7}$$

где E_p — модуль упругости материала державки резца, обычно равный $(2,0\div 2,1)\cdot 10^5 M\Pi a$

 I_p — момент инерции сечения державки резца, для прямоугольного сечения $I_p = \frac{BH}{12}^3$ мм⁴

 f_p — стрела прогиба, равная для черновой обработки 0,1 мм, для чистовой — 0,05 мм.

3.4.4 Допускаемая прочность детали — S_4 , мм/об:

$$S_4 = \left(\frac{P_{\partial on4}}{C_{PZ} \cdot t^{X_{PZ}} \cdot V^{Z_{PZ}} \cdot K_{PZ}}\right)^{\frac{1}{Y_{PZ}}}$$
(8)

где $P_{\partial on4}$ — наибольшая тангенциальная сила резания, допускаемая прочностью детали в H, равная:

$$P_{\partial on \, 4} = \frac{0.9W[\boldsymbol{\sigma}_u]}{L_1 \cdot O_{II}} \tag{9}$$

где L_1 – расчетная длина обработки по таблице 15. Приложения3;

 Q_H — коэффициент нагружения по таблице 15. Приложения3; W — момент сопротивления сечения детали; для сплошного круглого сечения равный:

$$W = \frac{\pi D^3}{32} \cong 0.1D^3 \, \text{MM}^3 \tag{10}$$

где $[\sigma_u]$ — допускаемое материалом напряжение изгиба в МПа, равное: для стали: $[\sigma_u] = 0.3 \, \sigma_s \, M\Pi a;$

для чугуна:
$$[\sigma_u] = 0.4 \ \sigma_{eq} \ M\Pi a;$$

 σ_{s} и $\sigma_{s^{u}}$ — пределы прочности соответственно для стали и чугуна.

3.4.5 Допускаемая жесткость детали — S_5 , мм/об:

$$S_5 = \left(\frac{P_{\partial on5}}{C_{PZ} \cdot t^{X_{PZ}} \cdot V^{Z_{PZ}} \cdot K_{PZ}}\right)^{\frac{1}{Y_{PZ}}}$$
(11)

где $P_{\partial on5}$ — наибольшая тангенциальная сила резания, допускаемая жесткостью детали в H, равная:

$$P_{\partial on5} = \frac{0.9Q_{\mathcal{K}} \cdot E_{\partial} \cdot I_{\partial} \cdot f_{\partial}}{L_{1}^{3}}$$
 (12)

где $Q_{\mathcal{H}}$ — коэффициент нагружения при расчете на жесткость по таблице 17. Приложение 5;

 E_{∂} – модуль упругости материала детали в МПа;

 $I_{\hat{c}}$ — момент инерции сечения детали в мм 4 , равный для сплошного сечения:

$$I = \frac{\pi \cdot d^4}{64} \cong 0.05 d^4 \tag{13}$$

где $f_{\hat{\sigma}}$ — допускаемая стрела прогиба детали в мм, для черновой обработки $f_{\hat{\sigma}}$ =0,2-0,4 мм; для чистовой обработки $f_{\hat{\sigma}}$ =0,1 мм; под последующую обработку $f_{\hat{\sigma}}$ =0,1 мм.

3.4.6 Допускаемой режущими свойствами режущей части резца – S_5 , мм/об:

$$S_6 = \left(\frac{C_V}{T^m \cdot t^{X_V} \cdot V} \cdot K_V\right)^{\frac{1}{y_V}} \tag{14}$$

где C_V – коэффициент обрабатываемости материала;

 x_{v} ; y_{v} – показатели степеней при глубине резания, подаче;

 K_V — общий поправочный коэффициент условий обработки, состоящий из произведения отдельных коэффициентов;

m — показатель относительной стойкости;

T — заданная стойкость инструмента в мин., принимаемая в этом расчете равной 60 мин. (для твердых сплавов).

Все коэффициенты выбираются по таблицам Приложения 2.

3.4.7 Выбор единственной подачи:

Из всех найденных по лимитирующим факторам подач выбирают наименьшую S_{min} и корректируют по паспорту станка, выбрав ближайшее наименьшее значение в качестве фактической подачи S_{ϕ} .

3.5 Расчет скорости резания.

3.5.1 Ориентировочная величина тангенциальной составляющей силы резания при черновом проходе – P_z , H:

$$P_Z = C_{P_Z} \cdot t^{X_{P_X}} \cdot S^{Y_{P_Z}} \cdot V^{Z_{P_Z}} \cdot K_{P_Z}$$
(15)

3.5.2 Крутящий момент, необходимый для резания, $-M_{Kp}$, H:

$$M_{Kp} = \frac{P_Z \cdot D}{2 \cdot 1000} \tag{16}$$

3.5.3 Число оборотов шпинделя станка, которому соответствует ближайший крутящий момент на шпинделе, – n_{cm} , об/мин:

$$n_{cm} = 974 \cdot \frac{N}{M_{Kp}} \tag{17}$$

3.5.4 Скорость резания, соответствующая большему на шпинделе крутящему моменту, $-V_{cm}$, м/мин:

$$V_{cm} = \frac{\pi \cdot D \cdot n_{cm}^{\phi a \kappa m}}{1000} \tag{18}$$

где $n_{\it U}^{\it фхиот}$ — выбранное по диаграмме скоростей число оборотов станка, ближайшее наименьшее значение.

3.5.5 Скорость резания, ограниченная режущими свойствами инструмента, $-V_p$, м/мин:

$$V_p = \frac{C_V \cdot K_V}{T^m \cdot t_1^{X_V} \cdot S_{\phi}^{y_V}} \tag{19}$$

3.5.6 Число оборотов шпинделя станка, соответствующее скорости резания, $V_p - n_p$, об/мин:

$$n_p = \frac{1000 \cdot V_p}{\pi \cdot D} \tag{20}$$

- **3.5.7** Выбрать по диаграмме скоростей станка ближайшее наименьшее значение числа оборотов n_p^{dxon} .
- **3.5.8** Из двух чисел оборотов (n_{on} и n_{p}) в качестве фактического n_{Φ} следует выбрать наименьшее число оборотов.

3.6 Показатели эффективности результатов расчета

3.6.1. Фактическая тангенциальная составляющая силы резания при черновом проходе – $P_{Z\phi}$, H:

$$P_{Z_{\phi}} = C_{P_{Z}} \cdot t_{1}^{X_{P_{Z}}} \cdot S_{\phi}^{Y_{P_{Z}}} \cdot V^{Z_{P_{Z}}} \cdot K_{P_{Z}}$$
(21)

3.6.2. Фактическая мощность, затрачиваемая на резание, — $N_{PE3\phi}$, кВт:

$$N_{pes_{\phi}} = \frac{P_{Z_{\phi}} \cdot V_{\phi}}{6120} \tag{22}$$

где V_{ϕ} — фактическая скорректированная скорость резания в м/мин:

$$V_{\phi} = \frac{\pi \cdot D \cdot n_{\phi}}{1000} \tag{23}$$

3.6.3. Коэффициент использования станка по мощности — η_N :

$$\eta_N = \frac{N_{pes.\phi}}{N_{pes.npus.}} \tag{24}$$

где $N_{pes.npue}$ — эффективная мощность привода станка, кВт:

$$N_{pes.npue.} = N_{s.o.} \cdot \eta_{npue} \tag{25}$$

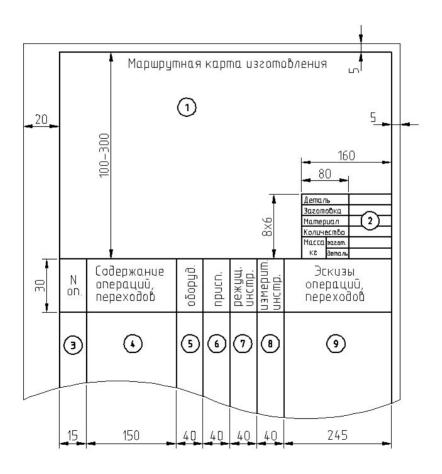
где $\eta_{npuв}$ - КПД привода главного движения, обычно = 0.75;

 $N_{\text{э.о.}}$ - мощность электродвигателя привода главного движения станка в кBт.

3.6.4. Коэффициент использования инструмента по скорости резания — η_V :

$$\eta_V = \frac{V_{\phi}}{V_{u}} \tag{26}$$

3.6.5. Основное время:


- определяется путем сложения основного времени отдельных фрагментов черновых переходов;
- затем определяется основное время чистовых переходов с измененным на одну ступень вниз подачей и на одну ступень вверх числом оборотов.

Суммарное основное время определяется путем сложения времени чернового и чистового проходов.

4. ПРЕДВАРИТЕЛЬНАЯ РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО МАРШРУТА ИЗГОТОВЛЕНИЯ ДЕТАЛИ

4.1. Технологический маршрут изготовления детали выполняется на листе графической части специальной формы

Форма маршрутной карты

- **4.1.1.** На *поле 1* выполняется эскиз детали со всеми требованиям к изготовлению. Прямо по эскизу детали выполняется чертеж заготовки (отливки, поковки, проката и т.п.) синим цветом. Расстояние между контуром заготовки и деталью, заштриховывается синим цветом. Указывают все размеры заготовки.
- **4.1.2.** На *поле 2* заполняется таблица с указанием наименования детали, вида заготовки, материала, а также веса заготовки и детали.
- **4.1.3.** На *поле 3* записываются номера операций по порядку с интервалом в 5 единиц.
- **4.1.4.** На *поле 4* записываются наименования операций, причём используются только имена прилагательные (слово «операция» не указывается), содержание переходов, установки. Переходы записываются в повелительном наклонении с указанием получаемых размеров и шероховатости поверхности.

<u>Например</u>: Точить диаметр $90^{+0,1}$ начерно и начисто с шероховатостью $\sqrt{R_Z\,10}$ на длине $30^{+0,5}$ (Размер $90^{+0,1}$ – размер, окончательно получаемый на данном переходе).

Операции отделяются друг от друга сплошной горизонтальной чертой.

4.1.5. На *поле* **5** записывается наименование и модель металлорежущего станка или другого оборудования, на котором выполняется операция.

- **4.1.6.** На *поле* **6** записывается приспособление, которое необходимо для операции, например, тиски гидравлические (приспособления, входящие в комплект станка, не записывают).
- **4.1.7.** На *поле* 7 записывается режущий инструмент, участвующий в операции, и его стандарт.
- **4.1.8.** На *поле 8* записывается измерительный инструмент, необходимый для выполнения операции, и его стандарт.
- **4.1.9.** На *поле* **9** выполняются эскизы операций. Деталь указывается в конечном положении обработки со всеми полученными размерами и шероховатостью поверхности, со всеми режущими инструментами в зажатом на оборудовании положении. Обработанные поверхности обводятся красным цветом.

Зажимные элементы, базовые элементы изображаются в виде условно-графических обозначений (смотри [3]).

4.1.10. Если на токарную операцию режимы резания рассчитываются классическими методами, то в остальных операциях режимы резания назначаются, чтобы рассчитать основное время обработки, а затем суммарное основное время. Причем расчет основного времени должен сопровождаться схемами обработки согласно Приложению 7.

5. БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Горбацевич А.Ф., Шкред В.А. Курсовое проектирование по технологии машиностроения: Учебное пособие для вузов. 5-е издание стереотипное. Перепечатка с четвертого издания. 1993 г. М.: ООО ИД «Альянс», 2007. 256 с.
- 2. Кучер А.М., Киватицкий М.М., Покровский А.А. «Металлорежущие станки» М. Машиностроение 1972 г. 308 с.
- 3. Справочник технолога-машиностроителя / Под ред. А.Г. Косиловой, Р.К. Мещерякова. – М.:Машиностроение, 1985. – Т. 1. – 665 с.
- 4. Справочник технолога-машиностроителя / Под ред. А.Г. Косиловой, Р.К. Мещерякова. – М.:Машиностроение, 1985. – Т. 2. – 496 с.
- 5. Ткачев А.Г., Шубин И.Н. Типовые технологические процессы изготовления деталей машин: Учебное пособие. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2004. 112 с.

Приложение 1

Любой вид **обработки металлов резанием** характеризуется режимами резания, представляющими собой совокупность следующих основных элементов: **скорость** резания V, глубина резания t и подача S.

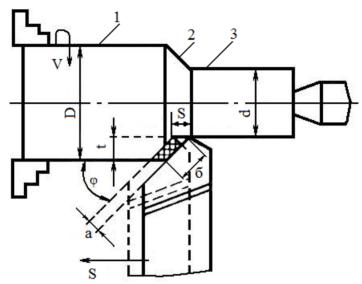


Рисунок 1- элементы режимов резания при точении, где 1 – обрабатываемая поверхность;

- 2 поверхность резания;
- 3 обработанная поверхность;
- D диаметр обрабатываемой заготовки;
- $d \partial u$ аметр детали после обработки;
- а и б толщина и ширина срезаемого слоя;
- ϕ главный угол в плане.

Таблица 1. Рекомендации по распределению припуска

Характер обработки	оховатость обработанной поверхности	Число проходов (переходов)	Номер прохода	Глубина резания по проходам
1. черновая	$R_z = 32$ — 40 мкм (1-3 класс)	1	1	t = h
2. получистовая	$R_z = 40 - 10 \text{ мкм}$ (4-5 ^й класс)	2	2	$t_1 \cong \frac{2}{3}h$ $t_2 \cong \frac{1}{3}h < 2$ $t_1 = \frac{2}{3}h$
3. чистовая	$R_a = 2,5 - 0,63$ мкм $(6-7^{ii})$ класс)	2	2	$t_1 = \frac{2}{3}h$ $t_2 = \frac{1}{3}h \le 0.5$
4. шлифование	$R_a \leq 0,63$ мкм ($\geq 7^{\text{й}}$ класс)	>1	_	тах. 0,5 мм

Приложение 2 Таблица 2. Значение коэффициентов и показателей степени в формуле скорости резания

ый		ей части	лане		п		ициент ли степ		H.	
материалОбрабатываемый	Вид обработки	инструментаМатериал режущей части	Вспомогательный угол в плане	Подача в мм/об	Cv	$\mathbf{X}_{\mathbf{V}}$	y _v	m	Период стойкости Т в мин.	Охлаждение
питье				до 0,3	273		0,20			ния
90Н9	ние	T5K10	10	Св. 0,3 до 0,7	227	0,15	0,35	0,20	60	Без охлаждения
стал	точе			Св.0,7 s <t< td=""><td>221</td><td>0,15</td><td>0,45</td><td></td><td></td><td>з охл</td></t<>	221	0,15	0,45			з охл
ная и	ьное	T15K6	0	s≥t	292	0,3	0,15	0,18	45	
ирован	продол	D 10	10	до 0,25	87, 5	0.25	0,33	0.125	(0)	дением
стая, лег	Наружное продольное точение	P18	10	Св. 0,25	56	0,25	0,66	0,125	60	охлаждения Без С охлаждением
роди	Н	ЦМ33 2	10	до 0,3	530	0,19	0,7	0,24	60	Без
угле		2		Св. 0,3	700	0,08	0,08	*,- '		дени
10нная	грезка	T5K10	_	_	47	_	0,8	0,2		охлаж
конструкци	прорезка Отрезка и	P18	_	_	23, 7	_	0,66	0,25	60	ием
$\sigma=75~{ m kr/MM}^2 { m C}$ таль конструкционная углеродистая, легированная и стальное литье	Фасонное точение	P18	_	_	22, 7	_	0,5	0,3	120	С охлаждением

141 Сталь жаропрочная 1Х18Н9Т (ЭЯТ) в состоянии поставки НВ	Наружное продольное точение	ВК8	10	1	110	0,2	0,45	0,15	60	Без охлаждения
---	-----------------------------	-----	----	---	-----	-----	------	------	----	----------------

Продолжение таблицы 2

酒		й части	ане				циенты		÷	
материалОбрабатываемый	Вид обработки	инструментаМатериал режущей части	Вспомогательный угол в плане	Подача в мм/об	C_{v}	$\mathbf{X}_{\mathbf{V}}$	Уv	m	Период стойкости Т в мин.	Охлаждение
	зние		10	До 0,4	292	0,15	0,2	0,2	60	Без охлаждения
	Наружное продольное точение	ВК 6		Св. 0,4	243	0,10	0,4	٠,=		охла
	олено		0	s <t< td=""><td>324</td><td>0,2</td><td>0,4</td><td>0,28</td><td>30</td><td>Pe3</td></t<>	324	0,2	0,4	0,28	30	Pe3
3 190	родо			s>t		0,4	0,2			
ЙНЕ	10e II	P18	10	До 0,25	37	0,15	0,3	0,1	60	
эсеры	ружі	110		Св. 0,25	35	0,10	0,4	v,1		
Чугун серый НВ 190		ЦМ 332	10	До. 0,5	1560	0,2	0,2	0,43	60	
p	езка и	ВК 6			68,5	_	0,4	0,2		
	очениеНаружное продольноепрорезкаОтрезка и	P18	l	l	22,5		0,4	0,15	60	
Чугун ковкий НВ 150	ьное	ВК	10	До 0,4	317	0,15	0,2	0,2	60	
M HI	одол	8	10	Св. 0,4	215	0,13	0,45	0,2	00	
OBKE	эе пр	P18	10	До 0,25	106	0,2	0,25	0,125	60	
ун к	ужн			Св. 0,25	75		0,5			
и́h	точениеНар									

	прорезкаОтрезка и	P18	_		47		0,5	0,25	60	
ерогенные НВ 100-	родольное			До 0,2	238		0,25			
Медные сплавы гетерогенные средней твердости НВ 100- 140	точениеНаружное продольноепрорезкаОтрезка и	P18	10	Св. 0,2	161	0,12	0,5	0,23	60	

Примечания:

- 1. При обработке конструкционных и жаропрочных сталей и стального литья всеми видами резцов из быстрорежущей стали без охлаждения вводить на скорость резания поправочный коэффициент 0,8.
- 2. При отрезке и прорезке конструкционных сталей и стального литья резцами с <u>твердым сплавом Т5К10</u> с охлаждением вводить на скорость резания поправочный коэффициент <u>1,4</u>.

Таблица 3. Поправочный коэффициент $K_{\text{ми}}$, учитывающий влияние механических свойств обрабатываемого материала на скорость резания.

	N	Іатериал режущей час	ти инструмента
Обрабатываемый материал		ердые сплавы и ралокерамические пластинки	Быстрорежущая сталь Р18
	Марка стали	Расчетная формула	Расчетная формула
Сталь конструкционная углеродистая и легированная	Т5К10, Т15К6, ЦМ332	$K_{Mv} = \frac{75}{\sigma_{ep}}$	$K_{Mv} = C_M \left(\frac{75}{\sigma_{ep}} \right)^n$
Алюминий и его сплавы	_	_	$\left(\sigma_{\scriptscriptstyle gp} ight)$
Чугун серый	ВК6, ВК8, ЦМ332	$K_{Mv} = \left(\frac{190}{HB}\right)^{1,25}$	$K_{Mv} = \left(\frac{190}{HB}\right)^{1,7}$
Чугун ковкий	ВК6, ВК8, ЦМ332	$K_{Mv} = \left(\frac{150}{HB}\right)^{1,25}$	$K_{Mv} = \left(\frac{150}{HB}\right)$
Бронза	_		

Таблица 4. Поправочный коэффициент $K_{\text{ми}}$, учитывающий влияние механических свойств обрабатываемого материала на скорость резания.

				Мате	риал ре	жущей	части	инстр	умента	a	
	TCR		Тверд	ый спл	іав ВК8				жущая	і сталь	P18
	иda					остоян	ие стал	И			
	Mary	5	T	ермообработка		1	Т	`ермоо	бработ	ка	
	праводреговод Марка стали Марка стали	В состоянии поставки	Отжиг	отпускНормализация и	Закалка и отпуск	Закалка	В состоянии поставки	Отжиг	отпускНормализация и	Закалка и отпуск	Закалка
					К	оэффиі	циент К	· Μυ			
Жавопводиме стати и сплавы	12XMP ЭИ415 15X1МФЛ X12ВМФ ЭИ757 ЭИ575 ЦЖ5Л 1X18НЭТ (ЭЯ1Т) ЭИ726 X23H18(ЭИ417) 1X18H12ТЛ ЭИ481 ЭИ812 ЭИ612 ЭИ6907А ЭИ765			2,1 0,8 — — — — 1,1 — — — —					3,3 0,8 — — — — 0,9 — — —		

Примечание. Значение коэффициента C_M и показателя степени n приведены в следующей таблице

Таблица 5. Коэффициент обрабатываемости C_M и показатель степени n для различных сталей при $\sigma_{\rm Bp}\!\!=\!\!75 {\rm kr/mm^2},$ алюминия и его сплавов.

Группы сталей и алюминиевых сплавов	Коэффициент обрабатываемост и С _М	Показатель степени п
Стали углеродистые (С≤0,6%)	1,0	1,75
Стали автоматные	1,2	1,75
Стали никелевые	1,0	1,75
Стали хромоникелевые	0,9	1,5
Стали углеродистые (C>0,6%), хромистые, марганцовистые, хромоникелевольфрамовые.	0,8	1,75
Хромомолибденовые, хромоникельмолибденовые, хромоалюминиевые, хромомолибденоалюминиевые и близкие к ним.	0,7	1,25
Стали хромомарганцовистые, хромокремнистые, хромокремнемарганцовистые, кремнемарганцовистые, хромоникельмарганцовистые и близкие к ним.	0,7	1,5
Стали инструментальные быстрорежущие	0,6	1,25
Алюминий: σ_{Bp} =7: 16 кг/мм² σ_{Bp} = 17:20 кг/мм²	6,0 5,0	0
$\begin{split} &\sigma_{\text{Bp}}{=}20{:}30 \text{ kg/mm}^2 \\ &\sigma_{\text{Bp}}{=}31{:}40 \text{ kg/mm}^2 \\ &\sigma_{\text{Bp}}{=}41{:}50 \text{ kg/mm}^2 \\ &\sigma_{\text{Bp}}{=}10{:}20 \text{ kg/mm}^2 \\ &\sigma_{\text{Bp}}{=}21{:}30 \text{ kg/mm}^2 \end{split}$	6,0 5,0 4,0 5,0 4,0	

Таблица 6. Поправочные коэффициенты, учитывающие влияния качества заготовки на скорость резания.

Факторы, характеризующие качество заготовки	Материал режущей части инструмента	Со	стояние загот	говки и значе	ния коэффицие	нтов	
ЭВКИ	цая г.			Ско	ркой		
Состояние поверхности заготовки	Гвердый сплав, быстрорежущая сталь и минералокерамика.	Без корки	Поковка		и чугунное итье	Медные	
верхнос	ав, быст нералок		и прокат	Обычное	Загрязненное	сплавы	
яние по	цый спл]	Коэффициент	K _{Pv}		
Состо	Твер,	1,0	0,8-0,9	0,7-0,8	0,5-0,6	0,9	
			стоянии	В состоя	нии термообра	ботки	
Состояние стали заготовки	Быстрорежущая сталь	горячекатанная	холоднотянутая	нормализованная	отожженная	улучшенная	
Состояние	Быстро		Коэффициент К _{Рv}				
		1,0	1,1	0,95	0,9	0,8	

Таблица 7. Поправочный коэффициент K_{Mv} , учитывающий влияние группы и механических свойств медных сплавов на скорость резания.

		Гј	руппы ме	дных сп	ілавов		
	Гетеро	генные			енной		
Показатели	средней твердости	твердые	Свинцовистые при основной гетерогенной структуре	Гомогенные	структуреС содержанием свинца менее 10% при основной гомогенной	Медь	Сплавы с содержанием свинца свыше 10%

НВ	100-140	150-250	70-90	60-90	60-80	60-70	35-65
K_{Mv}	1,0	0,7	1,7	2,0	4,0	8,0	12,0

Таблица 8. Поправочные коэффициенты, учитывающие влияние геометрических параметров режущей части инструмента на скорость резания

Параметры, влияющие на			Мат	ериал ј	эежуще	ей части инструмента					
скорость резания		Тве	ердый с	плав Быстрорежущая			щая сталь				
Форма передней грани	С фаской			Без фаски С фаско			Сфаской	Í	Без ф	аски	
Коэффициент К _{Фо}		1,0		1,05			1,0		0,9	95	
Главный угол в плане ф°	30	45	60	75	90	30	45	60	75	90	

при обработкеКоэффициент КФ	Конструкционных сталей и ковкого чугуна	1,13	1,0	0,92	0,86	0,81	1,26	1,0	0,84	0,74	0,66
	Жаропрочных сталей		1,0	0,87	0,78	0,7	1,25	1,0	0,83	0,73	0,63
	Серого чугуна и медных сплавов	1,2	1,0	0,88	0,83	0,73	1,2	1,0	0,88	0,8	0,73
Вспомогательный угол ф ⁰		_					10	15	20	30	45
Коэффициент $K_{\phi 1 \upsilon}$							1,0	0,97	0,94	0,91	0,87
Радиус при вершине г в мм		_					1	2	3	4	5
Коэффициент Кго		_					0,94	1,0	1,03	_	1,13

Таблица 9. Поправочный коэффициент $K_{\mu\nu}$, учитывающий влияние материала режущей части инструмента на скорость резания.

Материал режущей части инструмента	Обрабатывающий материал	Значения К _{иу} для марок инструментального материала							
Твердые сплавы	Сталь конструкционная и стальное литье	T5K10	T14K8	T15K6	T15K6T	Т30К4			
T		1,0	1,23	1,54	1,77	2,15			

	C	T5K10	_	Т15К6	_	ВК8
	Сталь жаропрочная	1,4	_	1,9	_	1,0
	Herry conve	ВК8	BK6	ВК3	ВК2	_
	Чугун серый	0,83	1,0	1,15	1,25	
	Чугун ковкий	ВК8	ВК6	ВК3	ВК2	
		1,0	1,1	1,26	1,32	_
альные	Сталь конструкционная,	P18	Р9	9XC	У10А	У12А
сталиИнструментальные	стальное литье, чугун серый и ковкий, алюминиевые и медные сплавы.	1,0	1,0	0,6	0,5 и менее	

Таблица 10. Поправочный коэффициент K_{qv} , учитывающий влияние площади поперечного сечения державки резца с режущей частью из быстрорежущей стали на скорость резания.

Іваємый	Значен	Значения K _{qv} для сечения державки резца в мм								
материалОбрабатываемый	12x20 16x16	16x25 20x20	20x30 25x25	25x40 30x30	30x45 40x40	40x60				
СТАЛЬ	0,93	0,97	1,0	1,04	1,08	1,12				
Медные сплавы	0,97	0,98	1,0	1,02	1,04	1,06				

Таблица 11. Поправочный коэффициент $K_{X\nu}$, учитывающий влияние длины хода резца при строгании на строгательных и долбежных станках на скорость резания.

тип	Значения K_{Xv} при длине хода резца в мм								
СТАНКА	50	100	150	200	300	500			
Продольно- строгальный	1,0	1,0	1,0	1,0	1,0	1,0			
Поперечно- строгальный	0,94	0,89	0,81	0,8	0,77	0,7			
Долбежный	0,71	0,67	0,61	0,6	0,57	0,52			

Таблица 12. Значения коэффициентов и показателей степени в формулах сил резания при точении.

та		й части	ьный		Ко	эффици	пенты и	показа	тель с	гепени	в форм	улах си	лы реза	ния	
атериз	F	жуще	гател		тангенц	онально	й		радиа	альной			oc	евой	
Обрабатываемый материал	вид обработки	стальБыстрорежущая Твердый сплавкерамикаМинерало-стальБыстрорежущая сплав Твердый инструмента Материал режущей части	угол в плане ф ¹ Вспомогательный	C_{Pz}	X _{pz}	\mathbf{y}_{pz}	n _z	$\mathbf{C}_{\mathbf{p}\mathbf{y}}$	X _{py}	Уру	n _y	C_{px}	X _{px}	y_{px}	n _x
	91	сплавТвердый	10 0	300 384	1,0 0,9	0,75 0,9	-0,15 -0,15	243 355	0,9 0,6	0,6 0,8	-0,3 -0,3	339 241	1,0 1,05	0,5 0,2	-0,4 -0,4
и стальное литье	Наружное продольное точение	стальБыстрорежущая	10	200	1,0	0,75	0	125	0,9	0,75	0	67	1,2	0,65	0
б _{яр} =75 кг/мм²Сталь конструкционная и стальное литье	Наружн	керамикаМинерало-	10	267	0,95	0,75	-0,15	108	0,7	0,45	-0,18	78	0,9	0,35	-0,22
=75 кг/мм²Ста	эрезка	Твердый сплав	_	408	0,72	0,8	0	173	0,73	0,67	0		_		_
	Отрезка и прорезка	стальБыстрорежущая		247	1,0	1,0	0	_	_	_	_				
гоставкиСталь жаропрочная 1Х18Н9Т (ЭЯ1Т) в состоянии	Наружное продольное точение	Твердый сплав	10	204	1,0	0,75	4	1	_	_	_		_	1	1

Продолжение таблицы 12

П	родо	лжені	жение таблицы 12													
		эй части	ІЬНЫЙ		Коэф	фицие	нты и	показа	тель ст	епени в	в форм	улах си	ілы реза	ния		
иал	5	жуще	гате	Та	нгенці	иальної	Í		радиа	льной			осевой			
Обрабатываемый материал	Вид обработки	сплавТвердый стальБыстрорежу-щаякерамикаМинерало-Быстрорежу-щая сталь сплавТвердый инструментаМатериал режущей части	угол в плане ф'Вспомогательный	C _{Pz}	Xpz	Ург	nz	Сру	Хру	Уру	ny	Срх	Хрх	Урх	n _x	
	9	сплавТвердый	10 0	92 123	1,0 1,0	0,75 0,85	0	54 61	0,9 0,6	0,75 0,5	0	46 24	1,0 1,05	0,4 0,2	0	
HB 190	Наружное продольное сечение	Быстрорежу-щая сталь	10	114	1,0	0,75	0	119	0,9	0,75	0	51	1,2	0,65	0	
Чугун серый НВ 190	Наруж	керамикаМинерало-	10	104	0,9	0,65	0	71	0,7	0,35	0	41	1,0	0,35	0	
	Отрезка и прорезка	стальБыстрорежу-щая	_	158	1,0	1,0	0	_	_	_		_	_	_	_	
Чугун ковкий НВ 150		сплавТвердый	10	81	1,0	0,75	0	43	0,9	0,75	0	38	1,0	0,4	0	

	сечение Наружное продольное	Быстрорежу-щая сталь	10	100	1,0	0,75	0	88	0,9	0,75	0	40	1,2	0,65	0
ун ковкий НВ 150	прорезкаОтрезка и	стальБыстрорежу-щая	_	139	1,0	1,0	0						_		_
Медные сплавы гетерогенные средней твердости НВ 100-140	Наружное продольное сечение	стальБыстрорежущая	10	55	1,0	0,66	0						_		

Таблица 13. Поправочный коэффициент K_{cP} , учитывающий влияние состояния и группы обрабатываемого материала на силы резания

Обрабатываемый материал	еневаланая, Ст	аль	силумин Алюминий и	Дюралюминий					
Состояние и группа металла	, ден ад ванная от оборования в тапа в т С	Холоднотянутая	_	σ _{вр} =2 кг/мі		σ _{вр} = КГ/М	35 IM ²	o K	_{вр} >35 :г/мм²
Коэффициент Кс _р	1,0	0,8	0,2	0,3		0,4	4		0,55
Обрабатываемый материал		Медные сплавы							
Состояние и	Гетерогенные						С		

группа металла	Средней твердости	Твердые	структуренцовистые при основной гетерогенной	огенные	содержанием свинца ниже 10% при основной гомогенной структуре	Р	содержанием свинца свыше 15%
Коэффициент Кс _р	1,0	0,75	0,65	1,8- 2,2	0,65-0,7	1,7- 2,1	0,25- 0,45

Таблица 14. Поправочные коэффициенты, учитывающие влияние геометрических параметров инструмента на силы резания при работе твердосплавными резцами (сталь и чугун) и резцами из быстрорежущей стали

Параметры, влияющие на	Металл режущей части инструмента									
силы резания		Тве	рдый с	плав		Быстрорежущая сталь				
Главный угол в плане Ф ⁰	30	45	60	75	90	30	45	60	75	90
Коэффициент на тангенциальную составляющую $K_{\phi pz}$	1,0 8	1, 0	0,9 4	0,9	0,8 9	1,0 8	1,0	0,9 8	1,0	1,08
Коэффициент на радиальную составляющую $K_{\varphi p y}$	1,3	1, 0	0,7 7	0,6 2	0,5	1,6 3	1,0	0,7 1	0,5 4	0,44
Коэффициент на осевую составляющую $K_{\phi px}$	0,7 8	1, 0	1,1 1	1,1 3	1,1 7	0,7	1,0	1,2 7	1,5 1	1,82
Угол наклона главного лезвия λ^0	-5	0	+5	+10	+15	_	_	_	_	
Коэффициент на тангенциальную составляющую $\mathbf{K}_{\lambda pz}$	1,0	1, 0	1,0	1,0	1,0	_	_			
Коэффициент на радиальную составляющую $\mathbf{K}_{\lambda py}$	0,7 5	1, 0	1,2 5	1,5	1,7	_				
Коэффициент на осевую составляющую $K_{\lambda px}$	1,7	1, 0	0,8 5	0,7 5	0,6 5	_			ı	ı
Радиус переходного лезвия г в мм						0,5	1,0	2,0	3,0	5,0
Коэффициент на тангенциальную составляющую $\mathbf{K}_{ ext{rpz}}$	_	_	_	_	_	0,8 7	0,9	1,0	1,0 4	1,1
Коэффициент на радиальную составляющую $\mathbf{K}_{\mathrm{rpy}}$						0,6 6	0,8 2	1,0	1,1 4	1,33

Таблица 15. Значения L_1 и Q

Tup anknonacijija	CXE	МЫ	Λ
Tun закрепления	обработки	нагружения	Q _H
Патрон	u u	P _R †	1
Центры		$ \begin{array}{c c} & L1 \\ & & \downarrow \\ & & \downarrow \\ & & & \Delta \end{array} $	0,25
Патрон и центр	LI L	P _R \ \Delta	0,19

Таблица 16. Обозначения закрепления деталей на токарном станке

	Фрагмент	Схема установки и	
No	операционного эскиза	закрепления	Примечания
1	12	2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 – центр неподвижный (гладкий); 2 – патрон поводковый; 3 – центр вращающийся; 4 – люнет подвижный
2	3r 3r	3r	1 - жесткая неподвижная опора; 2 – патрон трехкулачковый; 3 – центр вращающийся
3	12 3r 2 2 3 2 2 3		1 – жесткая неподвижная опора; 2 – патрон трехкулачковый; 3 – люнет подвижный
4	2 3r 3	1 3 T	1 — жесткая неподвижная опора; 2 — оправка цилиндрическая; 3 — зажим механический

Таблица 17. Значение коэффициента нагружения Qж

Тип закрепления	$Q_{\mathcal{K}}$	Примечание
В патроне	3	При $\frac{L}{D} \le 2$
В центрах	48	Π ри $\frac{L}{D} > 2 \div 5$
В патроне и центрах	110	При $\frac{L}{D} > 2$

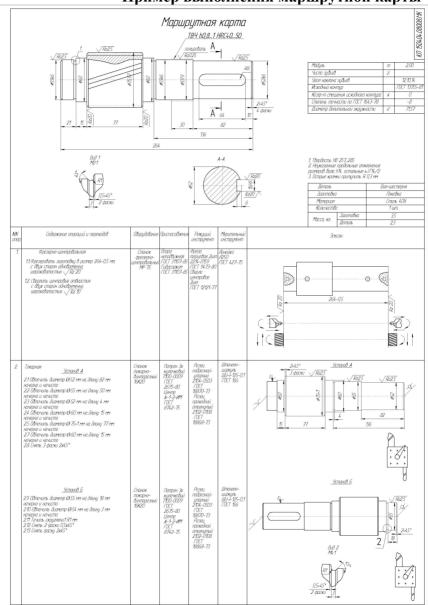
Определение времени основного перехода в минутах

$$T_{M} = \frac{L+t}{S_{\Phi} \cdot n_{\Phi}}; \text{MMH}$$
 (27)

где L — величина пути инструмента при обработке, в направлении подачи в мм, рассчитывается как:

$$L = l + t_1; (28)$$

или


$$L = l + t_1 + t_2; (29)$$

t — глубина резания;

 S_{Φ} — фактическая подача;

 ${f n}_{\Phi}$ — фактическое число оборотов равное ближайшему значению к расчетному из паспорта станка.

Пример выполнения маршрутной карты

	1	Термическая Закалить бетоль до НЕ 27.285-а дличе 30 км	Эстановка ТВЧ			Твердонер	
	4	Brugedon-eric 4.1 Brugedon- adoptione desemper 6.2577 ad doug 80 tr 18-27 5.257 ad doug 80 tr 18-27 5.256 ad doug 80 tr 18-27 5.2577 ad doug 18-27 5.2578 ad doug 18-27 5.2578 ad doug 18-27 5.258 ad doug 18-27	Опъек къзель- инзидаличный За EM	(Impon 3-x rypredisi cursions payausion Livery discussions discussions	Козе шпородатный подъема Козе Козе Козе Посто ГОИ	Сведа учеберскинная С инджелерия чествого прим ГОСТ 90%-26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	5	Фэхээлэв Фэхээлэйт илэнчны ах 1% x 64 x 61 гч	Спочек Верпиканчей Фрезорый GY-81	Tuesu 7200-0011 7007 16518-96	Фрего 227-0001 1007 940-78	Шалон глубьогча огокоторы 1007 9%-76	
(April 19	6	Adopsesser Assertion Subt Cusportanime VRA	Tmose 390-990-990-990-990-990-990-990-990-990-			Фраци 1033/рания	
Ш	Z	Конпрольная Праверить все разнеры					
Me Minabi Sah ulano Ben ud M Me Mabi Sah ulan							KIT 150404 0800811K Belse Yang tal San Manageres epina San

Пример выполнения расчета

Задание:

Для токарной обработки рассчитать режимы резания чернового перехода (прохода), коэффициент использования инструмента по скорости станка, по мощности, основное машинное время для чернового прохода и чистового прохода, приняв для чистового прохода фактическую подачу на одну ступень меньше, а фактическое число оборотов шпинделя — на одну ступень больше.

Исходные данные:

вариант	D (мм)	l (мм)	d (мм)	Материал
2	160	400	155	Ст3
$K_{pv}=1$		$C_v = 273$		
		$C_{py} = 243$		
$K_{\text{fv}} = 0,94$		$x_v = 0.15$		
		$x_{py} = 0.9$		
$K_{hv} = 1,33$		$y_v = 0.35$		
		$y_{py} = 0.6$		
$K_{mv} = \frac{75}{\sigma_B}$		m=0,2		
		$z_{py} = -0.9$		
		Т=60 ми	ИН	

$$C_{pz}=300$$
 $K_{pz}=1,1$

$$K_{mpx} = \left(\frac{75}{\sigma_B}\right)^{0.75}$$

$$X_{pz}=1$$
 $K_{px}=1$

$$K_{ppx} = 1,07$$

$$y_{pz}=0.75$$
 $K_{py}=0.75$

Державка 40*20

$$z_{pz}$$
=-0,15 C_{px} =339

Станок 16К20

$$x_{px} = 0.9$$

Остальные коэффициенты

$$\sigma_{\rm B} = 160 \rm M \Pi a$$
 $y_{\rm px} = 0.85$

$$N_{3I} = 10 \text{ kBT}$$
 $z_{DX} = -0.9$

Скоростные характеристики станка в мм/об:

12,5; 16; 20; 25; 31,5; 40; 50; 65; 80; 100; 125; 160; 200; 250;

315; 400; 500; 630; 800; 1000; 1250; 1600; 2000.

Коробка подач мм/об:

0,07; 0,085; 0,1; 0,125; 0,3; 0,35; 0,42; 0,51; 0,7; 0,9; 1,2; 1,6;

1,85; 2,1; 2,6; 2,85; 3,1; 3,25; 3,8; 3,75; 3,92; 4,00; 4,16.

Расчёт режимов резания:

- 1. Выбор глубины резания.
- 2. Выбор геометрических и конструктивных параметров, а также материала режущей части инструмента.
- 3. Определение величины допустимой подачи.
- 4. Назначение стойкости инструмента.
- 5. Определение величины скорости резания.
- 6. Определение показателей эффективных результатов расчёта.
 - 6.1. Расчёт фактической тангенциальной составляющей силы резания.
 - 6.2. Определение фактической мощности затраченной на резание.
 - 6.3. Расчёт коэффициентов использования по скорости резания и станка по мощности.
 - 6.4. Определение основного времени.

7. Анализ результатов расчётов

7.1. Распределение припуска и назначение глубины резания

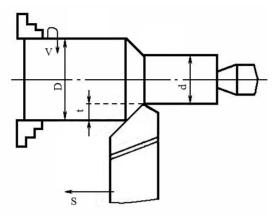


Рисунок 2 - Схема для определения глубины резания t

$$h = \frac{D - d}{2}, \text{ MM}; \tag{30}$$

$$h = \frac{160 - 155}{2} = 2.5$$
, MM; (31)

где **D** — диаметр обрабатываемой поверхности в мм.

d — диаметр обработанной поверхности в мм.

Глубина резания **t** определяется в зависимости от шероховатости обрабатываемой поверхности по таблице 1. Приложения 1.

$$t_1 = \frac{2}{3} h_{, \text{MM}};$$
 (32)

$$t_1 = \frac{2}{3} \cdot 2,5 = 1,7, \text{ MM};$$
 (33)

7.2. Выбор параметров резца

На данном этапе выбираем материал режущей части, форму передней поверхности, геометрические параметры режущей части (углы α , β , γ), размеры поперечного сечения державки и вылет резцов для предварительной и окончательной обработки.

7.3. Расчёт величин подачи.

7.3.1.Подача, допускаемая прочностью механической полачи станка в мм/об:

$$S_{1} = \left(\frac{P_{\partial on1}}{C_{Px} \cdot t^{x_{Px}} \cdot V^{z_{Px}} \cdot K_{Px}}\right)^{\frac{1}{y_{PX}}}, \text{ MM/o6};$$
(34)

$$S_{1} = \left(\frac{4800}{339 \cdot 1,7^{0.9} \cdot 70^{-0.9} \cdot 1}\right)^{\frac{1}{0.85}} = 1324,8, \text{ MM/o6};$$
 (35)

где V — скорость резания в м/мин, для предварительного перехода принимаем 70 м/мин, обычно для резцов оснащённых твёрдым сплавом;

 ${f P}_{{\mbox{\scriptsize доп1}}}$ — наибольшая осевая сила, допускаемая прочностью механической подачи станка:

$$P_{\text{доп1}}=0,4 [P_z], H$$
 (36)

$$P_{\text{доп1}} = 0, 4.12000 = 4800, \text{ H}$$
 (37)

 P_z — тангенциальная составляющая сила резания, равная для станков токарной группы 12000 H.

t — глубина резания первого прохода.

 C_{px} — коэффициент, характеризующий обработку материала, выбирается по справочникам.

 K_{px} — общий поправочный коэффициент, выбирается по справочникам.

 x_{px} , y_{px} , z_{px} — показатели степеней выбираются по справочникам в зависимости от C_{px} .

7.3.2. Подача, допускаемая прочностью державки резца:

$$S_{2} = \left(\frac{P_{oon2}}{C_{PZ} \cdot t^{X_{PZ}} \cdot V^{Z_{PZ}} \cdot K_{PZ}}\right)^{\frac{1}{Y_{PZ}}}, \text{ MM/o6};$$
 (38)

$$S_{1} = \left(\frac{6400}{300 \cdot 1,7^{1} \cdot 70^{-0.15} \cdot 1,1}\right)^{\frac{1}{7.75}} = 54,04 \text{ , MM/o6};$$
(39)

где $P_{\text{доп2}}$ — наибольшая тангенциальная сила допускаемой прочности державки резца в H, равная:

$$P_{\text{ДОП2}} = \frac{B \cdot H^2 \cdot [\sigma_u]}{6 \cdot l_B}, \text{ H};$$
 (40)

$$P_{AOII 2} = \frac{20 \cdot 40^2 \cdot 60}{6 \cdot 50} = 6400 \text{ , H;}$$
 (41)

где В — ширина державки резца в мм.

Н — высота державки резца в мм.

 ${f l}_P$ — вылет резца в мм для первого прохода, обычно равный:

$$l_P = (1 \div 1.5) \cdot H, \text{ MM}; \tag{42}$$

$$l_P = (1 \div 1.5) \cdot 50 = 50$$
, MM; (43)

 $[\sigma_{\text{н}}]$ — допускаемое направление изгиба для материала державки резца в МПа, обычно равное 0,3 $\sigma_{\text{B}} = 200$ МПа.

Остальные коэффициенты и показатели степеней выбирают аналогично формуле 3 по справочнику.

$$[\sigma_u] = 0.3 \cdot \sigma_B = 0.3 \cdot 200 = 60$$
, M Π a (44)

7.3.3. Подача допускаемой жёсткости державки резца:

$$S_{3} = \left(\frac{P_{oon3}}{C_{PZ} \cdot t^{X_{PZ}} \cdot V^{Z_{PZ}} \cdot K_{PZ}}\right)^{\frac{1}{Y_{PZ}}}; \text{ MM/o6}$$
 (45)

$$S_3 = \left(\frac{53760}{300 \cdot 1,7^1 \cdot 70^{-0.15} \cdot 1,1}\right)^{\frac{1}{1.75}} = 859,78, \text{ MM/o6}$$
 (46)

где **Р**_{доп}3 — наибольшая тангенциальная сила резания допускаемой жёсткости резца, равная:

$$P_{oon3} = \frac{3f_p \cdot E_p \cdot I_p}{l_p^3},$$
 (47)

$$P_{AOII3} = \frac{3 \cdot 0.1 \cdot 2.11^5 \cdot 106666.67}{50^3} = 53760 \text{ , H}$$
 (48)

 E_p — модуль упругости материала державки.

$$E_p = 2.1 \cdot 105$$
 , M Π a (49)

 $\mathbf{I}_{\mathbf{p}}$ — момент инерции сечения державки резца, равный:

$$I_P = \frac{B \cdot H^3}{12} \,, \,\text{MM} \tag{50}$$

$$I_P = \frac{20 \cdot 40^3}{12} = 106666,67, \text{ MM}$$
 (51)

 ${f f}_{{f p}}$ — допускаемая стрела прогиба резца в мм, равная:

- при черновой обработке 0,1мм;
- при чистовой обработке 0,05мм;

7.3.4. Подача, допускаемая прочностью детали:

$$S_{4} = \left(\frac{P_{\partial on 4}}{C_{PZ} \cdot t^{X_{PZ}} \cdot V^{Z_{PZ}} \cdot K_{PZ}}\right)^{\frac{1}{Y_{PZ}}}, \text{ MM/o6}$$
 (52)

$$S_4 = \left(\frac{401920}{300 \cdot 1,7^1 \cdot 70^{-0.15} \cdot 1,1}\right)^{\frac{1}{1.75}} = 1976 ,43 , \text{ MM/of}$$
 (53)

где $P_{\text{доп4}}$ — наиболее тангенциальная сила резания, допускаемая прочностью детали в H, равная:

$$P_{\text{AOR4}} = \frac{0.9 \cdot W \cdot [\sigma_{\text{\tiny H}}]}{l \cdot Q_{\text{\tiny H}}}, \text{ H}$$
 (54)

 ${f Q}_{f H}$ — коэффициент нагружения по таблице 15 Приложения 3.

W — момент сопротивления детали для круглого сечения:

$$W = \frac{\pi D^3}{32} \approx 0.1D^3 = 401920 \text{ , } \text{MM}^3$$
 (55)

тогда

$$P_{\text{non4}} = \frac{0.9 \cdot 401920 \cdot 60}{400 \cdot 0.25} = 217036 , 8 , H$$
 (56)

7.3.5. Подача, допускаемая жёсткостью детали:

$$S_{5} = \left(\frac{P_{oon5}}{C_{PZ} \cdot t^{X_{PZ}} \cdot V^{Z_{PZ}} \cdot K_{PZ}}\right)^{\frac{1}{Y_{PZ}}}, \text{ MM/o6}$$
 (57)

$$S_6 = \left(\frac{1302075}{300 \cdot 1,7^1 \cdot 70^{-0.15} \cdot 1,1}\right)^{\frac{1}{7.75}} = 54177 ,27 , \text{ MM/of}$$
 (58)

где $P_{\text{доп5}}$ — наиболее тангенциальная сила резания,

допускаемая жёсткостью детали в Н, равная:

$$P_{\partial on5} = \frac{0.9Q_{\mathcal{K}} \cdot E_{\partial} \cdot I_{\partial} \cdot f_{\partial}}{l^3} , \text{ H}$$
 (59)

$$P_{oon5} = \frac{0.9 \cdot 48 \cdot 2 \cdot 10^5 \cdot 32,15 \cdot 10^6 \cdot 0.3}{400^3} = 1302075 , H$$
 (60)

 ${f Q}_{\it ж}$ — коэффициент нагружения при расчете на жесткость по таблице 17 Приложения 5;

$$I = \frac{\pi \cdot d^4}{64} \cong 0.05 d^4 \tag{61}$$

 $\mathbf{f}_{\hat{e}}$ — допускаемая стрела прогиба детали в мм:

- для черновой обработки $f_{∂}$ =0,2-0,4мм;
- для чистовой обработки $f_{∂}$ =0,1мм;
- под последующую обработку f_{∂} =0,1мм.

7.3.6. Подача, допускаемая прочностью пластинки твёрдого сплава, которой оснащён резец.

$$S_6 = \left(\frac{C_V}{T^m \cdot t^{X_V} \cdot V} \cdot K_V\right)^{\frac{1}{\nu_V}}, \text{ MM/of}$$
 (62)

$$S_6 = \left(\frac{273}{60^{0.2} \cdot 1,7^{0.15} \cdot 70} \cdot 0,59\right)^{\frac{1}{0.35}} = 0,9, \text{ MM/of}$$
 (63)

где Т — стойкость резца в минутах;

 C_v — коэффициент, характеризующий скоростные качества материала режущей части резца, выбирается по справочникам;

К_v — поправочный коэффициент.

$$K_{V} = K_{PV} \cdot K_{fV} \cdot K_{hV} \cdot K_{mV} \tag{64}$$

$$K_V = 1.0,94.1,33.0,47 = 0,59$$
 (65)

m, **xv** , **zv** , **yv** — показатели степеней в стойкости глубины резания и скорости, выбираются по справочникам.

Из всех найденных подач необходимо выбрать наименьшую и скорректировать по паспорту станка, выбрав ближайшее наименьшее значение в качестве фактической подачи \mathbf{S}_{ϕ} . Если расчёты ведутся верно, то наименьшей подачей будет подача \mathbf{S}_{6} , так как она является лимитирующей от режущих свойств резца.

7.4. Определение величины скорости резания

7.4.1. Ориентированная величина тангенциальной составляющей силы резания:

$$P_Z = C_{p_2} \cdot t^{X_{p_X}} \cdot S^{Y_{p_Z}} \cdot V^{Z_{p_Z}} \cdot K_{p_2}$$
, H (66)

$$P_Z = 300 \cdot 1,7^{0.9} \cdot 0,9^{0.75} \cdot 70^{-0.15} \cdot 1,1 = 257,45$$
, H (67)

7.4.2. Крутящий момент потребности для резания:

$$M_{Kp} = \frac{P_Z \cdot D}{2 \cdot 1000}, \text{ H} \cdot \text{M}$$
 (68)

$$M_{Kp} = \frac{257,45.160}{2.1000} = 20,6, \text{ H} \cdot \text{M}$$
 (69)

где **D** — диаметр обрабатываемой детали в мм.

7.4.3. По найденному крутящему моменту вычисляем число оборотов шпинделя станка, которому соответствует ближайший максимальный допускаемый крутящий момент шпинделя:

$$n_{cm} = 974 \cdot \frac{N}{M_{Kp}}, \text{MUH}^{-1}$$
 (70)

$$n_{cm} = 974 \cdot \frac{7.5}{20.6} = 354.68 \, \text{MuH}^{-1}$$
 (71)

где N — мощность на шпинделе в кВт.

7.4.4. Скорость резания соответствует выбранному числу оборотов станка:

$$V_{cm} = \frac{\pi \cdot D \cdot n_{cm}^{\phi a \kappa m}}{1000}, \text{ м/мин}$$
 (72)

$$V_{cm} = \frac{3,14 \cdot 160 \cdot 354,68}{1000} = 178,19, \text{ M/MUH}$$
 (73)

7.4.5. Скорость резания лимитирующими режущими свойствами инструмента:

$$V_p = \frac{C_V \cdot K_V}{T^m \cdot t_1^{X_V} \cdot S_{\phi}^{y_V}}, \text{ м/мин}$$
 (74)

$$V_p = \frac{273 \cdot 0.59}{60^{0.2} \cdot 1.7^{0.15} \cdot 0.9^{0.35}} = 67.196 \, \text{, M/MUH}$$
 (75)

7.4.6. Из двух расчётных скоростей выбираем минимальную, а затем по этой выбранной скорости рассчитаем число оборотов шпинделя:

$$n_p = \frac{1000 \cdot V_p}{\pi \cdot D}, \text{ MUH}^{-1}$$
 (76)

$$n_p = \frac{1000 \cdot 67,196}{\pi \cdot 160} = 133.75 \text{, M/H}^{-1}$$
 (77)

7.4.7. По расчётному числу оборотов корректируем число оборотов по станку, выбрав из паспорта станка ближайшее наименьшее значение в качестве фактического числа оборотов:

$$n_{\Phi} = 125 \text{ , MUH}^{-1}$$
 (78)

7.4.8. Фактическая скорректированная скорость резания (по станку выбираем n_{Φ}):

$$V_{\phi} = \frac{\pi \cdot D \cdot n_{\phi}}{1000}, \text{ м/мин}$$
 (78)

$$V_{\phi} = \frac{3,14 \cdot 160 \cdot 125}{1000} = 62,8, \text{ м/мин}$$
 (79)

Расчетная фактическая скорость должна лежать в пределах:

$$V_{\Phi} \leq V_{p \text{ ИЛИ}} V_{\Phi} \leq V_{\text{cr}}$$
 (80)

По выбранной минимальной скорости резания (V_p или V_{cr}).

- **7.5.** Определения показателей эффективности результатов расчёта.
 - **7.5.1.** Фактическая тангенциальная составляющая силы резания:

$$P_{Z_{\Phi}} = C_{P_z} \cdot t_1^{X_{P_Z}} \cdot S_{\Phi}^{Y_{P_Z}} \cdot V^{Z_{P_Z}} \cdot K_{P_z}, H$$
 (81)

$$P_{Z_{\phi}} = 300 \cdot 1,7^{0.9} \cdot 0,9^{0.75} \cdot 62,8^{-0.15} \cdot 1,1 = 262,3, \text{ H}$$
 (82)

7.5.2. Фактическая мощность, затраченная на резание:

$$N_{pes_{\phi}} = \frac{P_{Z_{\phi}} \cdot V_{\phi}}{6120}, \text{ kBT}$$
 (83)

$$N_{pes_{\phi}} = \frac{262, 3 \cdot 62, 8}{6120} = 2,69 \text{ , } \text{KBT}$$
 (84)

7.5.3. Коэффициент использования станка по мощности:

$$\eta_N = \frac{N_{pes.\phi}}{N_{pes.mons}} \tag{85}$$

$$\eta_{N} = \frac{2,69}{7,5} = 0,36 \tag{86}$$

где

$$N_{\text{рез.грив}} = N_{\text{ЭД}} \cdot \boldsymbol{\eta}_{\text{рив}}, \text{ кBT}$$
 (87)

$$N_{\text{pes.ripurb.}} = 10 \cdot 0.75 = 7.5, \text{ kBT}$$
 (88)

 $N_{\text{э.д.}}$ — мощность электродвигателя привода главного движения станка в кВт;

 $N_{\rm эд}$ — мощность электродвигателя в кВт;

 $\eta_{\text{прив}}$ — КПД привода главного движения, обычно равный 0,75.

7.5.4. Коэффициент, использованный инструментом по скорости резания:

$$\eta_{V} = \frac{V_{\phi}}{V_{U}} \tag{89}$$

$$\eta_{V} = \frac{62.8}{67.196} = 0.93 \tag{90}$$

7.6. Время основного перехода в минутах:

$$T_{M} = \frac{L+t}{S_{\Phi} \cdot n_{\Phi}}, \text{ MИН}$$
 (91)

$$T_M = \frac{400 + 1.7}{0.9 \cdot 125} = 3.57$$
, MUH (92)

где L — величина пути инструмента при обработке в направлении подачи в мм, рассчитывается как:

$$L = l + t_1; (93)$$

или

$$L = l + t_1 + t_2 \,; \tag{94}$$

t — глубина резания;

 $\mathbf{S}_{\mathbf{\Phi}}$ — фактическая подача;

 ${\bf n}_{\Phi}$ —фактическое число оборотов, равное ближайшему значению к расчетному из паспорта станка.

Сергей Михайлович Горбатюк Лариса Владимировна Седых Константин Петрович Лунев

Технология конструкционных материалов

Методическое пособие по выполнению курсовой работы

Редактор И.В. Фадеева

Компьютерная верстка Е.Л. Малыгина

Подписано в печать	Бумага офсетная	
Формат 60 х 90 1/16	Печать офсетная	Учизд. л. 2,5
Рег. № 49	Тираж 50 экз.	Заказ №

Выксунский филиал «НИТУ «МИСиС» 607036 РП Шиморское, Выксунского района, Нижегородская.обл., ул. Калинина, 206.

Издательство РИО Выксунский филиал «НИТУ «МИСиС» 607036, РП Шиморское, Выксунского района, Нижегородская.обл., ул. Калинина, 206.

Отпечатано в типографии ООО «Полиграфист» 607060 г. Выкса. ул. Островского, 10, тел: 9-34-22.